Projections

Projection

Let X be a set. The projection of the vector \vec{v} onto X, written $\operatorname{proj}_{X} \vec{v}$, is the closest point in X to \vec{v}.

30

$$
\text { Let } \vec{a}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{b}=\left[\begin{array}{l}
4 \\
0
\end{array}\right], \vec{v}=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \text { and } \ell=\operatorname{span}\{\vec{a}\}
$$

30.1 Draw \vec{a}, \vec{b}, and \vec{v} in the same picture.
30.2 Find $\operatorname{proj}_{\{\vec{b}\}} \vec{v}, \operatorname{proj}_{\{\vec{a}, \vec{b}\}} \vec{v}$.
30.3 Find $\operatorname{proj}_{\ell} \vec{v}$. (Recall that a quadratic $a t^{2}+b t+c$ has a minimum at $t=-\frac{b}{2 a}$).
30.4 Is $\vec{v}-\operatorname{proj}_{\ell} \vec{v}$ a normal vector for ℓ ? Why or why not?

31 Let K be the line given in vector form by $\vec{x}=t\left[\begin{array}{l}1 \\ 2\end{array}\right]+\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and let $\vec{c}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
31.1 Make a sketch with \vec{c}, K, and $\operatorname{proj}_{K} \vec{c}$ (you don't need to compute $\operatorname{proj}_{K} \vec{c}$ exactly).
31.2 What should $\left(\vec{c}-\operatorname{proj}_{K} \vec{c}\right) \cdot\left[\begin{array}{l}1 \\ 2\end{array}\right]$ be? Explain.
31.3 Use your formula from the previous part to find $\operatorname{proj}_{K} \vec{c}$ without computing any distances.

Vector Components

Let \vec{u} and $\vec{v} \neq \overrightarrow{0}$ be vectors. The vector component of \vec{u} in the \vec{v} direction, written vcomp $\vec{v} \vec{u}$, is the vector in the direction of \vec{v} so that $\vec{u}-\operatorname{vcomp}_{\vec{v}} \vec{u}$ is orthogonal to \vec{v}.

32 Let $\vec{a}, \vec{b} \in \mathbb{R}^{3}$ be unknown vectors.
32.1 List two conditions that vcomp $\vec{b} \vec{a}$ must satisfy.
32.2 Find a formula for $\operatorname{vcomp}_{\vec{b}} \vec{a}$.

