Projections

Projection

Let *X* be a set. The *projection* of the vector \vec{v} onto *X*, written $\text{proj}_X \vec{v}$, is the closest point in *X* to \vec{v} .

30

Let
$$\vec{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\vec{b} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ and $\ell = \operatorname{span}\{\vec{a}\}$

- 30.1 Draw \vec{a} , \vec{b} , and \vec{v} in the same picture.
- 30.2 Find $\operatorname{proj}_{\{\vec{b}\}} \vec{\nu}$, $\operatorname{proj}_{\{\vec{a},\vec{b}\}} \vec{\nu}$.
- 30.3 Find $\operatorname{proj}_{\ell} \vec{v}$. (Recall that a quadratic $at^2 + bt + c$ has a minimum at $t = -\frac{b}{2a}$).
- 30.4 Is $\vec{v} \text{proj}_{\ell} \vec{v}$ a normal vector for ℓ ? Why or why not?

- Let *K* be the line given in vector form by $\vec{x} = t \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and let $\vec{c} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.
- 31.1 Make a sketch with \vec{c} , K, and $\operatorname{proj}_{K} \vec{c}$ (you don't need to compute $\operatorname{proj}_{K} \vec{c}$ exactly).
- 31.2 What should $(\vec{c} \text{proj}_K \vec{c}) \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ be? Explain.

31

31.3 Use your formula from the previous part to find $\text{proj}_K \vec{c}$ without computing any distances.

 		 [
			:	
1	1		:	
			:	
1			:	
	1			
			:	
:			:	:
1	1		:	
			:	
			:	
1			:	
			:	
:	:		:	:
1	1			
				: : :

32

Let $\vec{a}, \vec{b} \in \mathbb{R}^3$ be unknown vectors.

- 32.1 List two conditions that $v \operatorname{comp}_{\vec{h}} \vec{a}$ must satisfy.
- 32.2 Find a formula for $\operatorname{vcomp}_{\vec{b}} \vec{a}$.